Fiscal and Financial System in Japan

Hideyuki IWAMURA
2009/05/12

INTEREST RATES
 (MISHKIN, CHAPTER 4)
 UPDATED ON MAY 12

Four Types of Credit Market Instruments

In terms of the timing of their cash flow payments,
there are four types of credit market instruments.
(1) Simple Loan
(2) Discount Bond
(3) Coupon Bond
(4) Fixed-Payment Loan

Four Types of Credit Market Instruments

(1) Simple Loan

At the end of the $1^{\text {st }}$ year

At the end of the $4^{\text {th }}$ year

$$
100,000 \times(1+0.05)^{3} \times(1+0.05)=100,000 \times(1+0.05)^{4}
$$

If you make a simple loan of P
with the annual interest rate of i (or $i \times 100 \%$), after n years, your money will turn into

$$
P \times(1+i)^{n}
$$

The impact of compound interest

	year										
	1	2	3	4	5	6	7	8	9	10	
0.01	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	
0.05	1.05	1.10	1.16	1.22	1.28	1.34	1.41	1.48	1.55	1.63	
0.1	1.1	1.21	1.33	1.46	1.61	1.77	1.95	2.14	2.36	2.59	

(2) Discount Bond

(3) Coupon Bond

（4）Fixed－Payment Loan

How to Compare the Instruments

How can we compare two instruments with different cash flows and different maturities，and how can we decide which to invest？

We need a standard by which the instruments
with different cash flows and different maturities can be compared．
\longrightarrow Yield to Maturity（複利最終利回り）

We can decide which is the most profitable among various types of credit instruments by calculating their yields to maturity．

Yield to Maturity

Today	$1^{\text {st }}$ Year	$2^{\text {nd }}$ Year	$3^{\text {rd }}$ Year	$4^{\text {th }}$ Year
$\frac{5,000}{1+i}$	5,000			
$\frac{5,000}{(1+i)^{2}}$	$\frac{5,000}{1+i}$	5,000		
$\frac{5,000}{(1+i)^{3}}$	$\frac{5,000}{(1+i)^{2}}$	$\frac{5,000}{1+i}$	5,000	
$\frac{5,000}{(1+i)^{4}}$	$\frac{5,000}{(1+i)^{3}}$	$\frac{5,000}{(1+i)^{2}}$	$\frac{5,000}{1+i}$	5,000
$\frac{100,000}{(1+i)^{4}}$	$\frac{100,000}{(1+i)^{3}}$	$\frac{100,000}{(1+i)^{2}}$	$\frac{100,000}{1+i}$	100,000

$100,000=\frac{5,000}{1+i}+\frac{5,000}{(1+i)^{2}}+\frac{5,000}{(1+i)^{3}}+\frac{5,000}{(1+i)^{4}}+\frac{100,000}{(1+i)^{4}}$
The interest rate i which satisfies this equation tells us ...

To get the same cash flows at the same timing as the coupon bond by making a simple loan of the same amount, what rate of interest do we require?

- The most accurate measure of interest rates

> Yield to Maturity

- When economists say "interest rates," they implicitly mean yield to maturity.

Interest Rate and Bond Price

What is the relationship between a bond price and its interest rate?

$$
\begin{aligned}
& \begin{array}{l}
100,000
\end{array}=\frac{5,000}{1+(i)}+\frac{5,000}{(1+i)^{2}}+\frac{5,000}{(1+i)^{3}}+\frac{5,000}{(1+i)^{4}}+\frac{100,000}{(1+i)^{4}} \\
& \text { Bond Price } \\
& \text { Riserest Rate (or Yield to Maturity) } \\
& \text { Fall in Bond Price } \longleftrightarrow \text { Fall in Interest Rate } \\
& \longleftrightarrow \text { Rise in Interest Rate }
\end{aligned}
$$

Negative relationship between a bond price and its interest rate

Example: Bond Price and Interest Rate

A coupon bond coupon : $¥ 5,000$
maturity : 4 years
face value : $¥ 100,000$

Price of Bond (¥)	Interest Rate or Yield to Maturity(\%)
90,000	8.02
95,000	6.46
100,000	5
105,000	3.63
110,000	2.35

"Return" on a Bond

Rate of Return $=\frac{105,657+5,000-100,000}{100,000}$

Rise in Bond Price

$$
=0.1657(16.57 \%)
$$


```
            "Return" on a Bond
            Rate of Return = = 87,565+5,000-100,000
                        (87,565-100,000)+5,000
    Capital Loss
Fall in Bond Price
= - 0.0744 (-7.44%)
```

If your holding period does not match the years to maturity, the yield to maturity and the rate of return on the bond is different.

The bond price at any other point before the maturity is uncertain, which makes the cash flows from holding the bond uncertain.

Interest Rate and Price Level

One-year simple loan
with the annual interest rate of 5\%

You can buy 2 sets of mobile PCs

You give up 2 sets of mobile PCs

Purchasing power remains constant.

Real/Nominal Interest Rate

Important is:
how much interest your money earns in terms of goods and services,
or how much your purchasing power increases.

Real Interest Rate

Interest rate adjusted for changes in prices (inflation / deflation)

If your money earns 10% interest, and prices rise by 10%, the purchasing power remains constant.
If your money earns no interest, and prices fall by 10%, the purchasing power increases by 10%.

Schedule, updated on May 12

4/21 Money
4/28 (Canceled)
5/12 Interest rates
5/19 Behavior of interest rates
5/26 Term structure of interest rates
6/2 Money supply processes
6/9 Midterm Exam
6/16 Tools of monetary policy
6/23 Demand for money
6/30 Aggregate demand and supply analysis(1)
7/7 Aggregate demand and supply analysis(2)
7/14 Money and inflation
7/21 Final Exam

