3543 Fiscal and Financial System in Japan A / KC3002 International Finance Fall 2013 Lecture 5(Oct 18)

Interest Rates (cont.)

Hideyuki IWAMURA Faculty of International Studies

 \mathbf{M} meiji gakuin university

Money and Bonds Liquidity Money { High liquidity Low return Cash currency • Bank deposits Low liquidity **Bonds**-Government bonds Corporate bonds Stocks

Rev 1

Liquidity : the ease and speed with which an asset can be used to purchase goods/services

Return

Portfolio Decision

Rev 3 Money Demand and Interest Rates

In order to hold more money ...

Holding more money \iff Reducing bonds

Giving up interests on those bonds

The higher the interest rates, the smaller the demand for money.

Demand for Money

Demand for money is <u>negatively</u> related with interest rates on bonds.

Supply of Money

Supply of money is controlled by the central bank. The central bank bases its decision on policy consideration, thus is independent of interest rates.

Equilibrium Interest Rates

But what if the interest rate is 6% or 2%? Do market push it toward 4%?

What is bond?

Calculating interest rates allows us to compare these two bonds directly.

Interest Rates

Interest rate: How much <u>one unit of currency</u> invested in an asset earns for <u>one year</u>

If you lend ¥10,000 with an interest rate of 0.03 for 3 years, the total amount you will receive at the maturity is;

 $10,000 \times (1+0.03)^3$

If you lend P yens with an interest rate of i for n years, your money will be worth;

$$P \times (1+i)^n$$

It can be verified in the following manner.

Total payment $= 10,000 + (10,000 \times 0.03 + 10,000 \times 0.03 + 10,000 \times 0.03)$ at the maturity + $(10,000 \times 0.03^2 + 10,000 \times 0.03^2 + 10,000 \times 0.03^2)$ $+10,000\times0.03^{3}$ $=10,000+10,000\times3\times0.03+10,000\times3\times0.03^{2}$ $+10.000\times0.03^{2}$ $=10,000 \times (1+3 \times 0.03+3 \times 0.03^{2}+0.03^{3})$ $=10,000 \times (1^{3} + 3 \times 1^{2} \times 0.03 + 3 \times 1 \times 0.03^{2} + 0.03^{3})$ $10,000 \times (1+0.03)^3$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

How can we find the interest rate?

Divide ¥99,000 into three parts.

	Today	1 year after	2 years after	3 years after
А	a_1 —	→ 3,000		
В	a_2 —		→ 3,000	
С	<i>a</i> ₃ —			3,000+100,000

A: a₁ is lent for one year and earns interests for one year
B: a₂ is lent for two years and earns interests for two years
C: a₃ is lent for three years and earns interests for three years

i ... interest rate (unknown for the present)

Today	1 year after	2 years after	3 years after
A <i>a</i> ₁ -	$ a_1 \times (1+i) $ =3,000		
B a ₂ -		$a_2 \times (1+i)^2$ =3,000	
C <i>a</i> ₃ -			$a_3 \times (1+i)^3$ = 3,000+100,000

Today		1 year after	2 years after	3 years after
А	$\frac{3,000}{1+i}$	▶ 3,000		
В	$\frac{3,000}{\left(1+i\right)^2}$		> 3,000	
С	$\frac{3,000+100,000}{(1+i)^3}$			> 3,000+100,000

The sum of A, B and C must be equal to ¥99,000.

$$\frac{3,000}{1+i} + \frac{3,000}{\left(1+i\right)^2} + \frac{3,000+100,000}{\left(1+i\right)^3} = 99,000$$

This is an equation for the interest rate, and the solution gives the interest rate of Bond A.

General Case

If the stream of payments and the price of a bond are given, the equation gives the interest rate that the bond offers.

The equation also shows how the price of a bond and its interest rate are related.

Interest Rates: Example

i≈0.0267

Bond Price and Interest Rate: Example

What if you buy Bond A at a lower price?

With the stream of payments constant, as the price of a bond falls, its interest rate rises.

Equilibrium Interest Rate (1)

 \rightarrow The cost of holding money falls.

 \rightarrow The demand for money rises.

Equilibrium Interest Rate (2)

 \rightarrow The cost of holding money rises.

 \rightarrow The demand for money falls.

Equilibrium Interest Rate (3)

- At interest rates <u>higher than 4%</u>
 Because people hold more money than they want, they try to exchange money for bonds, raising the price of bonds and <u>lowering the interest rate</u>.
- At interest rates <u>lower than 4%</u>
 Because people hold less money than they want, they try to exchange bonds for money, lowering the price of bonds and <u>raising the interest rate</u>.
- At 4%

Because people hold exactly as much money as they want, they do not take another action and the interest rate stays.

The interest rate of bonds is determined so that the demand for money could be just equal to the outstanding stock of money.

Changes in Equilibrium Interest Rates

- Changes in GDP shift the demand schedule.
- Changes in price level shift the demand schedule.
- Changes in money stock shift the supply schedule.

Changes in GDP(income)

- → At the initial equilibrium interest rate, people hold less money than they want.
- → A rise(fall) in income raises(lowers) the equilibrium interest rate.

Changes in the Price Level

- → At the initial equilibrium interest rate, people hold less money than they want.
- → A rise(fall) in price level raises(lowers) the equilibrium interest rate.

Changes in the Money Stock

→ People try to buy bonds for their money.

→ A rise(fall) in the money stock lowers(raises) the equilibrium interest rate.

Events/Shocks	Effects on the equilibrium interest rate	
Rise in GDP	Rise in interest rate	
Fall in GDP	Fall in interest rate	
Rise in price level	Rise in interest rate	
Fall in price level	Fall in interest rate	
Rise in money stock	Fall in interest rate	
Fall in money stock	Rise in interest rate	

Liquidity Preference Model

