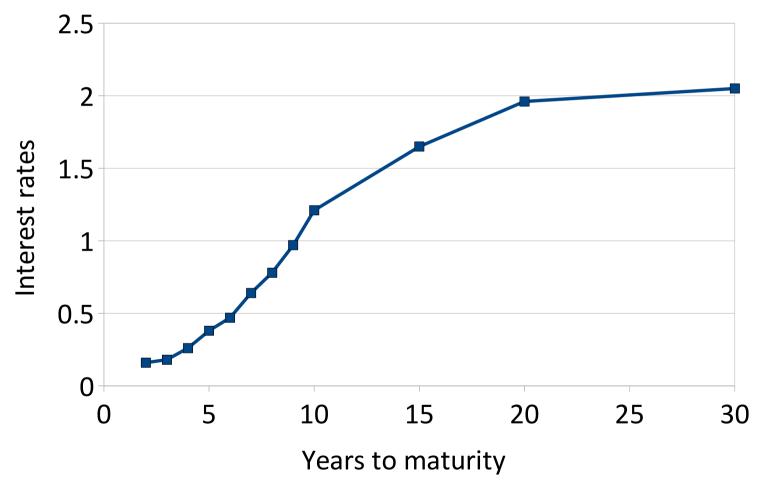
Fiscal & Financial System in Japan A 2010 Spring

Session 10

The Term Structure of Interest Rates(2)

July 5, 2010


Hideyuki IWAMURA

Senior Lecturer Faculty of International Studies

The meiji gakuin university

Yield Curve

Yield Curve ... Plot of yields on bonds with different maturities, but the same risk and liquidity

Example: Yield curve for Japanese government bonds

Three Empirical Facts on Yield Curves

Fact 1

Interest rates on bonds with different maturities move together over time.

Fact 2

When short-term interest rates are low, yield curves tend to slope <u>upward</u>; when short-term interest rates are high, yield curves tend to slope <u>downward</u>.

Fact 3

Yield curves almost always slope upward.

Economists have suggested *expectations theory*, to explain these facts we actually observe.

Expectations Theory

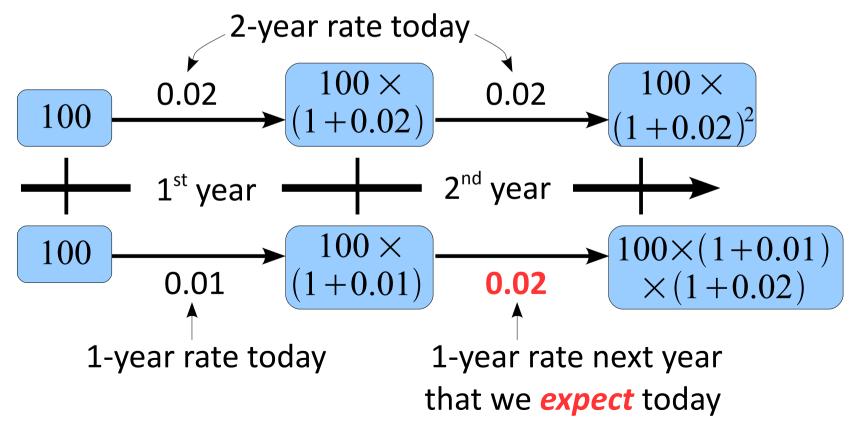
Theory or Model is a set of assumptions on the behavior of people.

Assumption 1. Perfect substitutes

For investors, bonds with different maturities are perfect substitutes.

Investors do not prefer one maturity to another, if the other conditions are equal.

Assumption 2. Risk-neutrality


Investors are risk-neutral.

Investors care only about the *expected* yields, whatever the variability is.

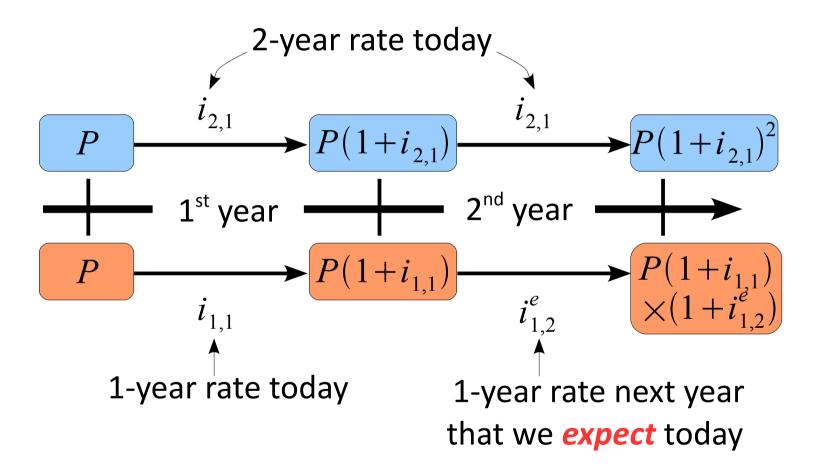
Implication of the Theory

Suppose that

- (1) the yield on 2-year bond today is 0.02,
- (2) the yield on 1-year bond today is 0.01, and
- (3) the yield on 1-year bond next year is expected to be 0.02

Perfect substitutability and risk-neutrality implies...

If yield on buy-and-hold > (expected) yield on roll-over


- → Everyone tries to replace 1-year bond with 2-year bond.
- → Rise in 2-year bond price, fall in 1-year bond price today
- → Fall in 2-year yield, rise in 1-year yield today

The process continues until

yield on buy-and-hold = (expected) yield on roll-over

This specifies the relationship among the yields on 1-year and 2-year bonds. The term structure of interest rates

Notation

Buy-and-hold Roll-over
$$P(1+i_{2,1})^2 = P(1+i_{1,1})(1+i_{1,2}^e)$$

$$1+2i_{2,1}+(i_{2,1})^2 = 1+i_{1,1}+i_{1,2}^e+i_{1,1}i_{1,2}^e$$
 Very small and negligible
$$2i_{2,1}=i_{1,1}+i_{1,2}^e$$

$$i_{2,1}=\frac{i_{1,1}+i_{1,2}^e}{2}$$

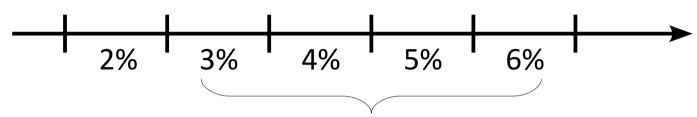
The yield on 2-year bond today equals

the average of $\{$ (1) the yield on 1-year bond today (2) the *expected* yield on 1-year bond next year

$$+ 1^{\text{st}} \text{ year} + 2^{\text{nd}} \text{ year} + 3^{\text{rd}} \text{ year} + \cdots + i_{1,n}^{e}$$

$$i_{1,1} = \frac{i_{1,1} + i_{1,2}^{e} + i_{1,3}^{e} + \cdots + i_{1,n}^{e}}{n}$$

The yield on n-year bond today equals


- (1) the yield on 1-year bond today
 (2) the *expected* yield on 1-year bond a year ahead
 (3) the *expected* yield on 1-year bond two years ahead
 - : (n) the *expected* yield on 1-year bond n-1 years ahead

The theory implies that

the yields on longer maturities depend on people's expectations of 1-year yields in the future.

Numerical Examples

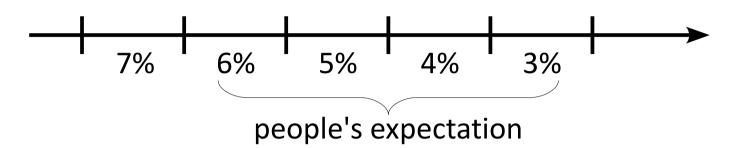
Example 1 People expect short-term rates to rise in the future

people's expectation

Today's interest rate on 2-year bond

Today's interest rate on 4-year bond

$$\frac{2+3}{2} = 2.5\%$$


$$\frac{2+3+4}{3} = 3\%$$

$$\frac{2+3+4+5}{4} = 3.5\%$$

$$\frac{2+3+4+5+6}{5} = 4\%$$

Upward-sloping yield curve

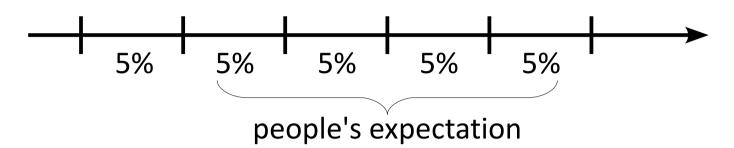
Example 2 People expect short-term rates to fall in the future

Today's interest rate on 2-year bond

Today's interest rate on 3-year bond

Today's interest rate on 4-year bond

Today's interest rate on 5-year bond $\frac{7+6+5+4+3}{5}$


$$\frac{\frac{7+6}{2}}{\frac{7+6+5}{3}} = 6.5\%$$

$$\frac{\frac{7+6+5}{3}}{\frac{7+6+5+4}{4}} = 5.5\%$$

$$\frac{6.5\%}{3} = 6.5\%$$

Downward-sloping yield curve

Example 3 People expect short-term rates to stay in the future

Today's interest rate on 2-year bond

Today's interest rate on 3-year bond

Today's interest rate on 4-year bond

Today's interest rate on 5-year bond $\frac{5+5+5+5+5}{5}$ =

$$\frac{5+5}{2} = 5\%$$

$$\frac{5+5+5}{3} = 5\%$$

$$+5+5+5$$

$$\frac{5+5+5+5}{4} = 5\%$$

$$\frac{5+5+5+5+5}{5} = 5\%$$

Flat yield curve

Expectation ⇔ Yield Curves

```
When people expect short-term rates to \text{rise stay fall} in the future, fall the yield curve slopes \text{flat downward}
```

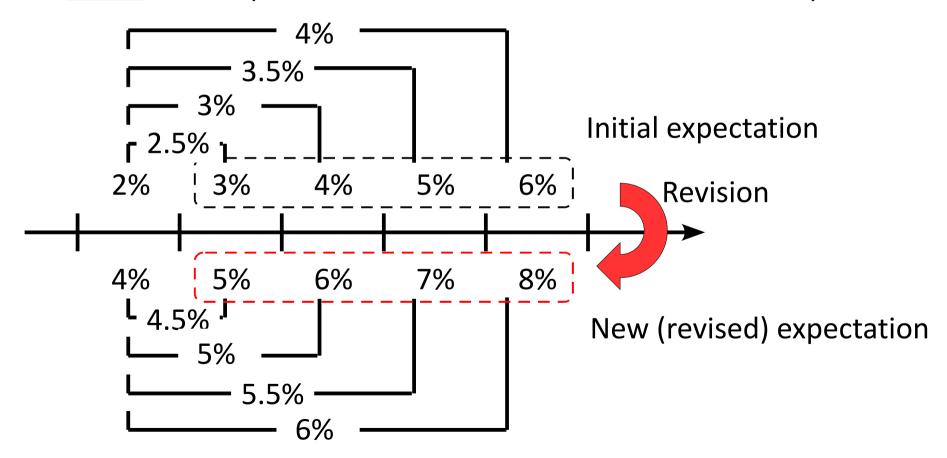
```
Upward-
Flat-
Downward-
people expect short-term rates to { rise stay fall } in the future.
```

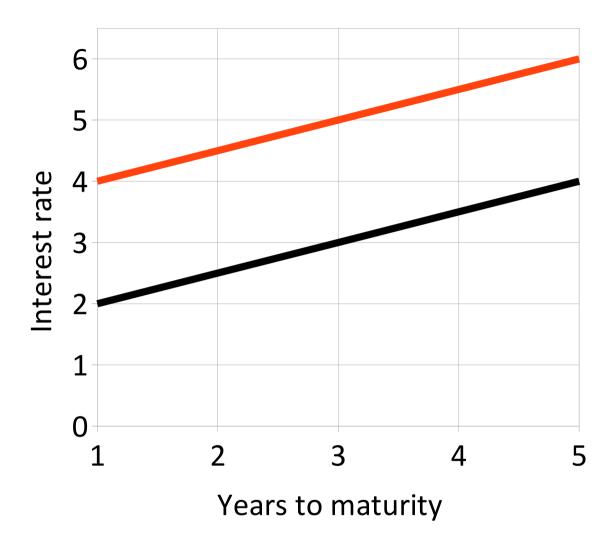
Expectations Theory and Fact 2

When a short-term rate today is relatively low ...

- → It is more likely to rise (or return to some *normal level*).
- → People expect short-term rates to rise in the future.
- → Expectations theory predicts <u>upward</u>-sloping yield curve.

When a short-term rate today is relatively high ...


- → It is more likely to fall (or return to some *normal level*).
- → People expect short-term rates to fall in the future.
- → Expectations theory predicts <u>downward</u>-sloping yield curve.


Predictions by expectations theory are consistent with "Fact 2."

Expectations Theory and Fact 1

Suppose that the central bank raises a short-term rate today.

People interpret the action as a change in monetary policy and <u>revise</u> their expectations on the future short-term rates upward.

Predictions by expectations theory are consistent with "Fact 1."