Fiscal \& Financial System in Japan A 2010 Spring Session 9

The Term Structure of Interest Rates June 28, 2010

Hideyuki IWAMURA

Senior Lecturer
Faculty of International Studies
任meiji gakuí university

6. The Term Structure of Interest Rats (Mishkin Ch.6)

Interest rates on Japanese government bonds (as of June 9, 2010)

Years to maturity	Maturity date	Interest rate
2	$06 / 15 / 2012$	0.16
3	$03 / 20 / 2013$	0.18
4	$03 / 20 / 2014$	0.26
5	$03 / 20 / 2015$	0.38
6	$03 / 20 / 2016$	0.47
7	$06 / 20 / 2017$	0.64
8	$03 / 20 / 2018$	0.78
9	$03 / 20 / 2019$	0.97
10	$06 / 20 / 2020$	1.21
15	$03 / 20 / 2025$	1.65
20	$03 / 20 / 2030$	1.96
30	$03 / 20 / 2040$	2.05

Source: Bloomberg.co.jp(http://www.bloomberg.co.jp/index.html)

Yield Curve

Yield Curve ... Plot of yields on bonds with different maturities, but the same risk and liquidity

Example: Yield curve for Japanese government bonds

Three Empirical Facts on Yield Curves

Fact 1 Interest rates on bonds with different maturities move together over time.

Fact 2 When short-term interest rates are low, yield curves tend to slope upward; when short-term interest rates are high, yield curves tend to slope downward.

Fact 3 Yield curves almost always slope upward.

Term Structure and Economic Theory

Find a theory that explains all of the "three empirical facts" consistently.

Economists have developed three theories.
$\left\{\begin{array}{l}\text { 1. Expectations theory } \\ \text { 2. Segmented markets theory } \\ \text { 3. Liquidity premium theory }\end{array}\right.$

Expectations Theory

Theory or Model is a set of assumptions on the behavior of people.

Assumption 1. Perfect substitutes

For investors, bonds with different maturities are perfect substitutes.

Investors do not prefer one maturity to another, if the other conditions are equal.

Assumption 2. Risk-neutrality
Investors are risk-neutral.
Investors care only about the expected yields, whatever the variability is.

Assumption 1: Perfect Substitutes

Suppose you invest your money for two years.

The theory assumes that ...
for investors, the two strategies are equivalent, and thus perfectly substitutable.

Assumption 2: Risk-neutrality

Investment 1. 7\% yield with certainty
Investment 2. 10\% yield with the prob of 0.7 , and no yield with 0.3

$$
\begin{aligned}
& 10 \% \times 0.7+0 \% \times 0.3=7 \% \\
& 7 \% \text { yield on average }
\end{aligned}
$$

\rightarrow Expected Yield

The theory also assumes that ...
for investors, the two investments are equivalent, or investors care only about the expected yields and never care about volatilities or risks.

Risk-neutral

Implication of the Theory

Suppose that
(1) the yield on 2-year bond today is 0.02 ,
(2) the yield on 1-year bond today is 0.01 , and
(3) the yield on 1-year bond next year is expected to be 0.02

Perfect substitutability and risk-neutrality implies...

If yield on buy-and-hold > (expected) yield on roll-over
\rightarrow Everyone tries to replace 1-year bond with 2-year bond.
\rightarrow Rise in 2-year bond price, fall in 1-year bond price today
\rightarrow Fall in 2-year yield, rise in 1-year yield today

The process continues until

> yield on buy-and-hold = (expected) yield on roll-over

This specifies the relationship among the yields on 1-year and 2-year bonds. The term structure of

Notation

$$
\begin{aligned}
& \text { Buy-and-hold } \text { Roll-over } \\
& P\left(1+i_{2,1}\right)^{2}=P\left(1+i_{1,1}\right)\left(1+i_{1,2}^{e}\right) \\
& 1+2 i_{2,1}+\left(i_{2,1}\right)^{2}=1+i_{1,1}+i_{1,2}^{e}+i_{1,1} i_{1,2}^{e} \\
& \text { Very small and negligible }
\end{aligned}
$$

The yield on 2-year bond today equals
the average of
(1) the yield on 1-year bond today
(2) the expected yield on 1-year bond next year

$$
\begin{aligned}
& i_{n, 1}=\frac{i_{1,1}+i_{1,2}^{e}+i_{1,3}^{e}+\cdots+i_{1, n}^{e}}{n}
\end{aligned}
$$

The yield on n-year bond today equals
the average of
(1) the yield on 1-year bond today
(2) the expected yield on 1-year bond a year ahead
(3) the expected yield on 1-year bond two years ahead
(n) the expected yield on 1-year bond $\mathrm{n}-1$ years ahead
The theory implies that the yields on longer maturities depend on people's expectations of 1-year yields in the future.

Numerical Examples

Example 1 People expect short-term rates to rise in the future

Today's interest rate on 2-year bond

$$
\frac{2+3}{2}=2.5 \%
$$

Today's interest rate on 3-year bond
Today's interest rate on 4-year bond

$$
\frac{2+3+4}{3}=3 \%
$$

Upward-sloping

$$
\frac{2+3+4+5}{4}=3.5 \%
$$ yield curve

Today's interest rate on 5 -year bond $\frac{2+3+4+5+6}{5}=4 \%$

Example 2 People expect short-term rates to fall in the future

Today's interest rate on 2-year bond

$$
\begin{aligned}
\frac{7+6}{2} & =6.5 \% \\
\frac{7+6+5}{3} & =6 \% \\
\frac{7+6+5+4}{4} & =5.5 \%
\end{aligned}
$$

Today's interest rate on 3-year bond
Today's interest rate on 4-year bond
Downward-sloping yield curve

Today's interest rate on 5 -year bond $\frac{7+6+5+4+3}{5}=5 \%$

Example 3 People expect short-term rates to stay in the future

Today's interest rate on 2-year bond $\quad \frac{5+5}{2}=5 \%$
Today's interest rate on 3 -year bond $\quad \frac{5+5+5}{3}=5 \%$
Today's interest rate on 4 -year bond $\quad \frac{5+5+5+5}{4}=5 \%$
Today's interest rate on 5 -year bond $\frac{5+5+5+5+5}{5}=5 \%$

Flat yield curve

Expectation \Leftrightarrow Yield Curves

Expectation Theory and Fact 2

When a short-term rate today is relatively low ...
\rightarrow It is more likely to rise (or return to some normal level).
\rightarrow People expect short-term rates to rise in the future.
\rightarrow Expectations theory predicts upward-sloping yield curve.
When a short-term rate today is relatively high ...
\rightarrow It is more likely to fall (or return to some normal level).
\rightarrow People expect short-term rates to fall in the future.
\rightarrow Expectations theory predicts downward-sloping yield curve.

Predictions by expectations theory are consistent with "Fact 2."

Expectation Theory and Fact 1

Suppose that the central bank raises a short-term rate today.
People interpret the action as a change in monetary policy and revise their expectations on the future short-term rates upward.

Predictions by expectations theory are consistent with "Fact 1."

